
CS 329A, Handout #10Nayak

STRIPS planning

• A set of operators, where each operator has

– a set of parameters

– a set of preconditions

– a set of effects, consisting of add effects and delete effects

• A set of objects to instatiate an operator’s parameters

– a fully instantiated operator is called an action

• A set of propositions representing the initial state

• A set of propositions representing the goals

• Planning problem: Find a sequence of actions that, starting in 
the initial state, achieve all the goals



CS 329A, Handout #10Nayak

Simple Rocket domain

• Figure 1 from Blum and Furst 1997



CS 329A, Handout #10Nayak

Approaches to STRIPS planning

• Search through the space of world states

– forward search, regression search, bidirectional search,  
means-ends analysis, …

• Search through the space of plans

– total order planning or partial order planning

• Search through a planning graph



CS 329A, Handout #10Nayak

Graphplan

• Construct a graph that represents all valid plans up to a 
maximum length

• Search the graph for a valid plan



CS 329A, Handout #10Nayak

Valid plans in Graphplan

A valid plan is

• A set of actions

– includes special no-op or frame actions

• Specified times for each action

– actions at the same time don’t interfere with each other

• Preconditions of actions at time 1 must be in the initial state

• Preconditions of actions at time t > 1 must be made true by the 
plan at time t

– propositions true at time t > 1 are the effects of actions at 
time t–1

• Goals are true at the final time step



CS 329A, Handout #10Nayak

A valid plan for a Rocket problem

at A L

at B L

at R L

fuel R

load R L A

load R L B

at A L

at B L

at R L

fuel R

in A R

in B R

move R L P at R L

fuel R

in A R

in B R

at R P

unload R P A

unload R P B

fuel R

in A R

in B R

at R P

at A L

at B L



CS 329A, Handout #10Nayak

Planning graphs

• Like valid plans without the restriction that actions at the same 
time don’t interfere with each other

• A planning graph is a leveled graph with

–  two kinds of nodes (propositions and actions)

• alternates between proposition levels and action levels

– three kinds of edges (preconditions, add effects, delete 
effects)

• An action is at action level i if all its preconditions are at 
proposition level i

• A proposition is at proposition level i > 1, if it is an add effect 
of some action (including no-op actions) at level i–1



CS 329A, Handout #10Nayak

Planning graph for a Rocket problem

• Figure 2 from Blum and Furst 1997



CS 329A, Handout #10Nayak

Mutual exclusions

• Two actions at the same level are mutually exclusive if no 
valid plan could possibly contain both of them

• Two propositions at the same level are mutually exclusive if 
no valid plan could possibly make themboth true



CS 329A, Handout #10Nayak

Propagating mutual exclusions

• Two actions at the same level are mutually exclusive if 

– Interference: if either action deletes a precondition or add 
effect of the other

– Competing needs: if a precondition of one action and a 
precondition of the other action are mutually exclusive

• Two propositions at the same level are mutually exclusive if

– all ways of creating one proposition are exclusive of all 
ways of creating the other proposition



CS 329A, Handout #10Nayak

Graphplan

function Graphplan(Ops, Objs, InitState, Goals)

Initialize G with proposition level 1 using InitState
for i = 1 incrementing by 1 do

if proposition level i contains all Goals and
no two goals are mutually exclusive at level i then
Search G for a valid plan to achieve Goals
if  G contains a valid plan then return the plan

endif
Augment G with action level i and proposition level i+1
if termination condition is satisfied then  return “no plan”

endfor
end Graphplan



CS 329A, Handout #10Nayak

Size of the planning graph

• Theorem: Consider a planning problem with n objects, p 
propositions in the initial state, m operators each having a 
constant number of parameters.  Let l be the length of the 
longest add list  Then the size of a t-level planning graph, and 
the time needed to create the graph, are polynomial in n, m, p, 
l, and t



CS 329A, Handout #10Nayak

Searching the graph for a valid plan

function Solve-goals(goal-set, level)

if level == 1 then
if InitState ⊇  goal-set  then return ({})

else 
if IsMemoized(goal-set, level) then return () 
new-actions = Select-actions(goal-set, {}, level)
if new-actions ≠ () then

return new-actions
else 

Memoize(goal-set, level)
return ()

endif
endif

end Solve-goals



CS 329A, Handout #10Nayak

Selecting actions at a given level
function Select-actions(goal-set, actions, level)

if goal-set = {} then
return Solve-goals(preconditions(actions), level – 1)

else
goal = pop(goal-set)
if goal achieved by some action in actions then

return Select-actions(goal-set, actions, level)
else

for  each action  that achieves goal and 
  not mutex with any action in actions  do
new-actions = Select-actions(goal-set, actions ∪ {action}, level)
if new-actions ≠ () then return new-actions

endfor
return ()

endif
endif



CS 329A, Handout #10Nayak

Example

at A P

at B P

at C N

unload R1 P A
unload R2 P A

…
unload R2 P B
unload R1 P B

…
unload R1 N C
unload R2 N C

at R1 P
in R1 A

…
in R1 B

…
at R2 N
in R2 C



CS 329A, Handout #10Nayak

Experimental results



CS 329A, Handout #10Nayak

Accounting for Graphplan’s efficiency

• Mutual exclusions

• Consideration of parallel plans

• Memoizing

• Low-level costs



CS 329A, Handout #10Nayak

Leveling off

• Lemma: If no valid plan exists, then there exists a proposition 
level P such that all future proposition levels are identical to P

– i.e., contain the same propositions and mutual exclusions

– graph is said to have leveled off after P

• Corollary: No solution exists if 

– a goal does not appear in P  or

– P has mutually exclusive goals



CS 329A, Handout #10Nayak

Termination condition

• Let Si
t  denote the set of memoized goal sets at level i after an 

unsuccessful stage t

• Theorem: If the graph has leveled off at some level n and a 
stage t has passed in which | Sn

t–1 | = | Sn
t |, then no valid plan 

exists


